Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642374

RESUMO

Green feather algae (Bryopsidales) undergo a unique life cycle in which a single cell repeatedly executes nuclear division without cytokinesis, resulting in the development of a thallus (>100 mm) with characteristic morphology called coenocyte. Bryopsis is a representative coenocytic alga that has exceptionally high regeneration ability: extruded cytoplasm aggregates rapidly in seawater, leading to the formation of protoplasts. However, the genetic basis of the unique cell biology of Bryopsis remains poorly understood. Here, we present a high-quality assembly and annotation of the nuclear genome of Bryopsis sp. (90.7 Mbp, 27 contigs, N50 = 6.7 Mbp, 14 034 protein-coding genes). Comparative genomic analyses indicate that the genes encoding BPL-1/Bryohealin, the aggregation-promoting lectin, are heavily duplicated in Bryopsis, whereas homologous genes are absent in other ulvophyceans, suggesting the basis of regeneration capability of Bryopsis. Bryopsis sp. possesses >30 kinesins but only a single myosin, which differs from other green algae that have multiple types of myosin genes. Consistent with this biased motor toolkit, we observed that the bidirectional motility of chloroplasts in the cytoplasm was dependent on microtubules but not actin in Bryopsis sp. Most genes required for cytokinesis in plants are present in Bryopsis, including those in the SNARE or kinesin superfamily. Nevertheless, a kinesin crucial for cytokinesis initiation in plants (NACK/Kinesin-7II) is hardly expressed in the coenocytic part of the thallus, possibly underlying the lack of cytokinesis in this portion. The present genome sequence lays the foundation for experimental biology in coenocytic macroalgae.

2.
Gen Comp Endocrinol ; 351: 114476, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408712

RESUMO

Primordial germ cells (PGCs) are pivotal for gonadal development and reproductive success. Though artificial induction of sterility by targeting PGCs are gaining popularity due to its advantages in fish surrogacy and biodiversity management, it is often skill and time intensive. In this study, we have focused on understanding the role of PGCs and the chemotactic SDF-1/CXCR4 signaling on gonad development of Japanese anchovy (JA, Engraulis japonicus), an upcoming marine model organism with eco-commercial values, with an aim to develop a novel, easy, and versatile gonad sterilization method. Our data showed that PGC migration related genes, i.e., sdf-1a, sdf-1b, cxcr4a, cxcr4b and vasa, are phylogenetically closer relatives of respective herring (Clupea harengus) and zebrafish (Danio rerio) homolog. Subsequently, PGC marking and live tracing experiments confirmed that PGC migration in JA initiates from 16 hours post fertilization (hpf) followed by PGC settlement in the gonadal ridge at 44 hpf. We found that overexpression of zebrafish sdf-1a mRNA in the germ cell suppresses cxcr4a and increases cxcr4b transcription at 8 hpf, dose dependently disrupts PGC migration at 24-48 hpf, induces PGC death and upregulates sdf-1b at 5 days post hatching. 48 h of immersion treatment with CXCR4 antagonist (AMD3100, Abcam) also accelerated PGC mismigration and pushed the PGC away from gonadal ridge in a dose responsive manner, and further when grown to adulthood caused germ cell less gonad formation in some individuals. Cumulatively, our data, for the first time, suggests that JA PGC migration is largely regulated by SDF1/CXCR4 signaling, and modulation of this signaling has strong potential for sterile, germ cell less gonad preparation at a mass scale. However, further in-depth analysis is pertinent to apply this methodology in marine fish species to successfully catapult Japanese anchovy into a true marine fish model.


Assuntos
Gônadas , Mesoderma , Animais , Movimento Celular , Células Germinativas/metabolismo , Gônadas/embriologia , Japão , Peixe-Zebra
3.
Front Physiol ; 15: 1349119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370015

RESUMO

SDF-1/CXCR4 chemokine signaling are indispensable for cell migration, especially the Primordial Germ Cell (PGC) migration towards the gonadal ridge during early development. We earlier found that this signaling is largely conserved in the Japanese anchovy (Engraulis japonicus, EJ), and a mere treatment of CXCR4 antagonist, AMD3100, leads to germ cell depletion and thereafter gonad sterilization. However, the effect of AMD3100 was limited. So, in this research, we scouted for CXCR4 antagonist with higher potency by employing advanced artificial intelligence deep learning-based computer simulations. Three potential candidates, AMD3465, WZ811, and LY2510924, were selected and in vivo validation was conducted using Japanese anchovy embryos. We found that seven transmembrane motif of EJ CXCR4a and EJ CXCR4b were extremely similar with human homolog while the CXCR4 chemokine receptor N terminal (PF12109, essential for SDF-1 binding) was missing in EJ CXCR4b. 3D protein analysis and cavity search predicted the cavity in EJ CXCR4a to be five times larger (6,307 Å³) than that in EJ CXCR4b (1,241 Å³). Docking analysis demonstrated lower binding energy of AMD3100 and AMD3465 to EJ CXCR4a (Vina score -9.6) and EJ CXCR4b (Vina score -8.8), respectively. Furthermore, we observed significant PGC mismigration in microinjected AMD3465 treated groups at 10, 100 and 1 × 105 nM concentration in 48 h post fertilized embryos. The other three antagonists showed various degrees of PGC dispersion, but no significant effect compared to their solvent control at tested concentrations was observed. Cumulatively, our results suggests that AMD3645 might be a better candidate for abnormal PGC migration in Japanese anchovy and warrants further investigation.

4.
J Biosci Bioeng ; 137(5): 344-353, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365536

RESUMO

The mutants resistant to a phenylalanine analog, 4-fluorophenylalanine (4FP), were obtained for metabolic engineering of Corynebacterium glutamicum for producing aromatic amino acids synthesized through the shikimate pathway by adaptive laboratory evolution. Culture experiments of the C. glutamicum strains which carry the mutations found in the open reading frame from the 4FP-resistant mutants revealed that the mutations in the open reading frames of aroG (NCgl2098), pheA (NCgl2799) and aroP (NCgl1062) encoding 3-deoxy-d-arabino-heptulosonate-7-phosphate, prephenate dehydratase, and aromatic amino acid transporter are responsible for 4FP resistance and higher concentration of aromatic amino acids in their culture supernatants in the 4FP-resistant strains. It was expected that aroG and pheA mutations would release feedback inhibition of the enzymes involved in the shikimate pathway by phenylalanine and that aroP mutations would prevent intracellular uptake of aromatic amino acids. Therefore, we conducted metabolic engineering of the C. glutamicum wild-type strain for aromatic amino acid production and found that phenylalanine production at 6.11 ± 0.08 g L-1 was achieved by overexpressing the mutant pheA and aroG genes from the 4FP-resistant mutants and deleting aroP gene. This study demonstrates that adaptive laboratory evolution is an effective way to obtain useful mutant genes related to production of target material and to establish metabolic engineering strategies.


Assuntos
Corynebacterium glutamicum , Poli-Hidroxietil Metacrilato/análogos & derivados , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica , Fenilalanina , Ácido Chiquímico/metabolismo , Aminoácidos Aromáticos/genética , Aminoácidos Aromáticos/metabolismo
5.
Sci Data ; 10(1): 927, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129438

RESUMO

Herein, we present the first high-quality long-read-based chromosome-level genome assemblies and gene annotations of the genomes of three endangered Tokudaia species: Tokudaia osimensis, Tokudaia tokunoshimensis, and Tokudaia muenninki. These species, which are endemic to different islands of the Ryukyu Islands, Japan, exhibited unique karyotypes and sex chromosomal characteristics. The genome assemblies generated using PacBio, Illumina, and Hi-C sequence data consisted of 13 (corresponded to 12 autosomes and one X chromosome), 23 (corresponded to 22 autosomes and one X chromosome), and 23 (corresponded to 21 autosomes and the neo- and ancestral X regions) chromosome-level scaffolds that contained 2,445, 2,477, and 2,661 Mbp of sequence data, respectively. Annotations of protein-coding genes were performed using RNA-Seq-based, homology-based, and Ab initio methods. BUSCO completeness values for every species exceeded 96% for genomes and 98% for genes. These data can be an important resource for contributing to our understanding of species genomes resulting from allopatric speciation and provide insights into mammalian sex-determination mechanisms and sex chromosome evolution.


Assuntos
Genoma , Murinae , Animais , Japão , Murinae/genética , Cromossomo X
6.
Microbiol Resour Announc ; 12(9): e0035323, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37623315

RESUMO

The genomes of obligate bacterial co-symbionts of the green rice leafhopper Nephotettix cincticeps, which is notorious as an agricultural pest, were determined. The streamlined genomes of "Candidatus Sulcia muelleri" and "Candidatus Nasuia deltocephalinicola" exhibited complementary metabolic pathways for synthesizing essential nutrients that contribute to host adaptation.

7.
PLoS One ; 18(8): e0286941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37639389

RESUMO

In the Japanese hagfish, Eptatretus burgeri, approximately 21% of the genomic DNA in germ cells (2n = 52) consists of 16 chromosomes (eliminated [E]-chromosomes) that are eliminated from presumptive somatic cells (2n = 36). To uncover the eliminated genome (E-genome), we have identified 16 eliminated repetitive DNA families from eight hagfish species, with 11 of these repeats being selectively amplified in the germline genome of E. burgeri. Furthermore, we have demonstrated that six of these sequences, namely EEEb1-6, are exclusively localized on all 16 E-chromosomes. This has led to the hypothesis that the eight pairs of E-chromosomes are derived from one pair of ancestral chromosomes via multiple duplication events over a prolonged evolutionary period. NGS analysis has recently facilitated the re-assembly of two distinct draft genomes of E. burgeri, derived from the testis and liver. This advancement allows for the prediction of not only nonrepetitive eliminated sequences but also over 100 repetitive and eliminated sequences, accomplished through K-mer-based analysis. In this study, we report four novel eliminated repetitive DNA sequences (designated as EEEb7-10) and confirm the relative chromosomal localization of all eliminated repeats (EEEb1-10) by fluorescence in situ hybridization (FISH). With the exception of EEEb10, all sequences were exclusively detected on EEEb1-positive chromosomes. Surprisingly, EEEb10 was detected as an intense signal on EEEb1-positive chromosomes and as a scattered signal on other chromosomes in germ cells. The study further divided the eight pairs of E-chromosomes into six groups based on the signal distribution of each DNA family, and fiber-FISH experiments showed that the EEEb2-10 family was dispersed in the EEEb1-positive extended chromatin fiber. These findings provide new insights into the mechanisms underlying chromosome elimination and the evolution of E-chromosomes, supporting our previous hypothesis.


Assuntos
Feiticeiras (Peixe) , Animais , Masculino , Biologia Computacional , DNA , Eucromatina , Feiticeiras (Peixe)/genética , Hibridização in Situ Fluorescente
8.
Genome Biol Evol ; 15(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37494061

RESUMO

Cephonodes hylas, the coffee bee hawk moth is a hawk moth species with unique characteristics, such as larvae feeding on gardenia, overcoming the toxicity of its iridoid glycosides, diurnal adults, and transparent wings. Although C. hylas is a fascinating model for molecular biological research, genome sequence analysis-based genetic approaches to elucidate these peculiarities have not yet been undertaken. We successfully achieved de novo genome assembly at the chromosome level of C. hylas comparable to the Lepidoptera model organism, silkworm. Additionally, 16,854 protein-coding genes were annotated, and the constructed genome sequence and annotated genes were of the highest quality BUSCO completion compared to closely related species. Comparative genome analysis revealed the process of chromosomal evolution from the Bombycoidea ancestral (n = 31) genome and changes in turnover at the chromosome level associated with chromosomal fusion events, such as the rate of repetitive sequence insertion. These analyses were only possible because the genome was constructed at the chromosome level. Additionally, increased the nonsynonymous/synonymous rate (dN/dS) ratios were observed in multiple photoreceptor-related genes that were strongly associated with the acquisition of diurnal activity. Furthermore, tandemly duplicated expanded genes containing many digestive and other enzymes and larval midgut-specific expression were also confirmed. These genes may be involved in the metabolism of genipin, a toxin found in gardenias. Using the genome sequence of C. hylas determined at the chromosome level, we have successfully identified new insights into the chromosomal evolution of Bombycoidea, as well as the relationship between the genome sequence and its characteristic traits.


Assuntos
Falcões , Mariposas , Abelhas/genética , Animais , Café , Falcões/genética , Cromossomos , Mariposas/genética , Fenótipo , Evolução Molecular
9.
Sci Data ; 10(1): 441, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433828

RESUMO

In Japan, wasabi (Eutrema japonicum) is an important traditional condiment, and is recognized as an endemic species. In the present study, we generated a chromosome-level and haplotype-resolved reference genome for E. japonicum using PacBio CLR (continuous long reads), Illumina, and Hi-C sequencing data. The genome consists of 28 chromosomes that contain 1,512.1 Mb of sequence data, with a scaffold N50 length of 55.67 Mb. We also reported the subgenome and haplotype assignment of the 28 chromosomes by read-mapping and phylogenic analysis. Three validation methods (Benchmarking Universal Single-Copy Orthologs, Merqury, and Inspector) indicated that our obtained genome sequences were a high-quality and high-completeness genome assembly. Comparison of genome assemblies from previously published genomes showed that our obtained genome was of higher quality. Therefore, our genome will serve as a valuable genetic resource for both chemical ecology and evolution research of the genera Eutrema and Brassicaceae, as well as for wasabi breeding.


Assuntos
Brassicaceae , Genoma de Planta , Benchmarking , Haplótipos , Melhoramento Vegetal
10.
Genome Biol ; 24(1): 162, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434204

RESUMO

Chromosome-level haplotype-resolved genome assembly is an important resource in molecular biology. However, current de novo haplotype assemblers require parental data or reference genomes and often fail to provide chromosome-level results. We present GreenHill, a novel scaffolding and phasing tool that considers various assemblers' contigs as input to reconstruct chromosome-level haplotypes using Hi-C without parental or reference data. Its unique functions include new error correction based on Hi-C contacts and the simultaneous use of Hi-C and long reads. Benchmarks reveal that GreenHill outperforms other approaches in contiguity and phasing accuracy, and the majority of chromosome arms are entirely phased.


Assuntos
Comportamento de Utilização de Ferramentas , Benchmarking , Haplótipos
11.
DNA Res ; 30(4)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478310

RESUMO

The prediction of gene structure within the genome sequence is the starting point of genome analysis, and its accuracy has a significant impact on the quality of subsequent analyses. Gene structure prediction is roughly divided into RNA-Seq-based methods, ab initio-based methods, homology-based methods, and the integration of individual prediction methods. Integrated methods are mainstream in recent genome projects because they improve prediction accuracy by combining or taking the best individual prediction findings; however, adequate prediction accuracy for eukaryotic species has not yet been achieved. Therefore, we developed an integrated tool, GINGER, that solves various issues related to gene structure prediction in higher eukaryotes. By handling artefacts in alignments of RNA and protein sequences, reconstructing gene structures via dynamic programming with appropriately weighted and scored exon/intron/intergenic regions, and applying different prediction processes and filtering criteria to multi-exon and single-exon genes, we achieved a significant improvement in accuracy compared to the existing integration methods. The feature of GINGER is its high prediction accuracy at the gene and exon levels, which is pronounced for species with more complex gene architectures. GINGER is implemented using Nextflow, which allows for the efficient and effective use of computing resources.


Assuntos
/genética , Eucariotos , Genoma , Éxons , Íntrons , Algoritmos , Software
12.
Plant J ; 115(4): 1151-1162, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37265080

RESUMO

The modification of photosynthesis-related genes in plastid genomes may improve crop yields. Recently, we reported that a plastid-targeting base editor named ptpTALECD, in which a cytidine deaminase DddA functions as the catalytic domain, can homoplasmically substitute a targeted C to T in plastid genomes of Arabidopsis thaliana. However, some target Cs were not substituted. In addition, although ptpTALECD could substitute Cs on the 3' side of T and A, it was unclear whether it could also substitute Cs on the 3' side of G and C. In this study, we identified the preferential positions of the substituted Cs in ptpTALECD-targeting sequences in the Arabidopsis plastid genome. We also found that ptpTALECD could substitute Cs on the 3' side of all four bases in plastid genomes of Arabidopsis. More recently, a base editor containing an improved version of DddA (DddA11) was reported to substitute Cs more efficiently, and to substitute Cs on the 3' side of more varieties of bases in human mitochondrial genomes than a base editor containing DddA. Here, we also show that ptpTALECD_v2, in which a modified version of DddA11 functions as the catalytic domain, more frequently substituted Cs than ptpTALECD in the Arabidopsis plastid genome. We also found that ptpTALECD_v2 tended to substitute Cs at more positions than ptpTALECD. Our results reveal that ptpTALECD can cause a greater variety of codon changes and amino acid substitutions than previously thought, and that ptpTALECD and ptpTALECD_v2 are useful tools for the targeted base editing of plastid genomes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Genomas de Plastídeos , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mitocôndrias/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Genomas de Plastídeos/genética
14.
Arch Microbiol ; 205(2): 66, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645481

RESUMO

Polyhydroxyalkanoate (PHA) is a type of biopolymer produced by most bacteria and archaea, resembling thermoplastic with biodegradability and biocompatibility features. Here, we report the complete genome of a PHA producer, Aquitalea sp. USM4, isolated from Perak, Malaysia. This bacterium possessed a 4.2 Mb circular chromosome and a 54,370 bp plasmid. A total of 4067 predicted protein-coding sequences, 87 tRNA genes, and 25 rRNA operons were identified using PGAP. Based on ANI and dDDH analysis, the Aquitalea sp. USM4 is highly similar to Aquitalea pelogenes. We also identified genes, including acetyl-CoA (phaA), acetoacetyl-CoA (phaB), PHA synthase (phaC), enoyl-CoA hydratase (phaJ), and phasin (phaP), which play an important role in PHA production in Aquitalea sp. USM4. The heterologous expression of phaC1 from Aquitalea sp. USM4 in Cupriavidus necator PHB-4 was able to incorporate six different types of PHA monomers, which are 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV), 3-hydroxyhexanoate (3HHx) and isocaproic acid (3H4MV) with suitable precursor substrates. This is the first complete genome sequence of the genus Aquitalea among the 22 genome sequences from 4 Aquitalea species listed in the GOLD database, which provides an insight into its genome evolution and molecular machinery responsible for PHA biosynthesis.


Assuntos
Betaproteobacteria , Genoma Bacteriano , Poli-Hidroxialcanoatos , Aciltransferases/genética , Aciltransferases/metabolismo , Betaproteobacteria/genética , Malásia , Poliésteres/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(49): e2211574119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442104

RESUMO

Mammalian sex chromosomes are highly conserved, and sex is determined by SRY on the Y chromosome. Two exceptional rodent groups in which some species lack a Y chromosome and Sry offer insights into how novel sex genes can arise and replace Sry, leading to sex chromosome turnover. However, intensive study over three decades has failed to reveal the identity of novel sex genes in either of these lineages. We here report our discovery of a male-specific duplication of an enhancer of Sox9 in the Amami spiny rat Tokudaia osimensis, in which males and females have only a single X chromosome (XO/XO) and the Y chromosome and Sry are completely lost. We performed a comprehensive survey to detect sex-specific genomic regions in the spiny rat. Sex-related genomic differences were limited to a male-specific duplication of a 17-kb unit located 430 kb upstream of Sox9 on an autosome. Hi-C analysis using male spiny rat cells showed the duplicated region has potential chromatin interaction with Sox9. The duplicated unit harbored a 1,262-bp element homologous to mouse enhancer 14 (Enh14), a candidate Sox9 enhancer that is functionally redundant in mice. Transgenic reporter mice showed that the spiny rat Enh14 can function as an embryonic testis enhancer in mice. Embryonic gonads of XX mice in which Enh14 was replaced by the duplicated spiny rat Enh14 showed increased Sox9 expression and decreased Foxl2 expression. We propose that male-specific duplication of this Sox9 enhancer substituted for Sry function, defining a novel Y chromosome in the spiny rat.


Assuntos
Mamíferos , Cromossomos Sexuais , Masculino , Feminino , Ratos , Camundongos , Animais , Regulação para Cima , Ativação Transcricional , Cromossomo Y/genética , Camundongos Transgênicos
16.
Genome Biol Evol ; 14(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36283693

RESUMO

The paper nautilus or greater argonaut, Argonauta argo, is a species of octopods which is characterized by its pelagic lifestyle and by the presence of a protective spiral-shaped shell-like eggcase in females. To reveal the genomic background of how the species adapted to the pelagic lifestyle and acquired its shell-like eggcase, we sequenced the draft genome of the species. The genome size was 1.1 Gb, which is the smallest among the cephalopods known to date, with the top 215 scaffolds (average length 5,064,479 bp) covering 81% (1.09 Gb) of the total assembly. A total of 26,433 protein-coding genes were predicted from 16,802 assembled scaffolds. From these, we identified nearly intact HOX, Parahox, Wnt clusters, and some gene clusters that could probably be related to the pelagic lifestyle, such as reflectin, tyrosinase, and opsin. The gene models also revealed several homologous genes related to calcified shell formation in Conchiferan mollusks, such as Pif-like, SOD, and TRX. Interestingly, comparative genomics analysis revealed that the homologous genes for such genes were also found in the genome of the shell-less octopus, as well as Nautilus, which has a true outer shell. Therefore, the draft genome sequence of Arg. argo presented here has helped us to gain further insights into the genetic background of the dynamic recruitment and dismissal of genes to form an important, converging extended phenotypic structure such as the shell and the shell-like eggcase. Additionally, it allows us to explore the evolution of from benthic to pelagic lifestyles in cephalopods and octopods.


Assuntos
Genoma , Moluscos , Animais , Feminino , Filogenia , Moluscos/genética , Genômica
17.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35820410

RESUMO

Alternative splicing underpins functional diversity in proteins and the complexity and diversity of eukaryotes. An example is the doublesex gene, the key transcriptional factor in arthropod sexual differentiation. doublesex is controlled by sex-specific splicing and promotes both male and female differentiation in holometabolan insects, whereas in hemimetabolan species, doublesex has sex-specific isoforms but is not required for female differentiation. How doublesex evolved to be essential for female development remains largely unknown. Here, we investigate ancestral states of doublesex using Thermobia domestica belonging to Zygentoma, the sister group of Pterygota, that is, winged insects. We find that, in T. domestica, doublesex expresses sex-specific isoforms but is only necessary for male differentiation of sexual morphology. This result supports the hypothesis that doublesex initially promoted male differentiation during insect evolution. However, T. domestica doublesex has a short female-specific region and upregulates the expression of vitellogenin homologs in females, suggesting that doublesex may already play some role in female morphogenesis of the common ancestor of Pterygota. Reconstruction of the ancestral sequence and prediction of protein structures show that the female-specific isoform of doublesex has an extended C-terminal disordered region in holometabolan insects but not in nonholometabolan species. We propose that doublesex acquired its function in female morphogenesis through a change in the protein motif structure rather than the emergence of the female-specific exon.


Assuntos
Proteínas de Insetos , Diferenciação Sexual , Processamento Alternativo , Animais , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos/genética , Masculino , Isoformas de Proteínas/metabolismo , Diferenciação Sexual/genética
18.
DNA Res ; 29(4)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35686927

RESUMO

Asobara japonica is an endoparasitic wasp that parasitizes Drosophila flies. It synthesizes various toxic components in the venom gland and injects them into host larvae during oviposition. To identify and characterize these toxic components for enabling parasitism, we performed the whole-genome sequencing (WGS) and devised a protocol for RNA interference (RNAi) with A. japonica. Because it has a parthenogenetic lineage due to Wolbachia infection, we generated a clonal strain from a single wasp to obtain highly homogenous genomic DNA. The WGS analysis revealed that the estimated genome size was 322 Mb with a heterozygosity of 0.132%. We also performed RNA-seq analyses for gene annotation. Based on the qualified WGS platform, we cloned ebony-Aj, which encodes the enzyme N-ß-alanyl dopamine synthetase, which is involved in melanin production. The microinjection of double-stranded RNA (dsRNA) targeting ebony-Aj led to body colour changes in adult wasps, phenocopying ebony-Dm mutants. Furthermore, we identified putative venom genes as a target of RNAi, confirming that dsRNA injection-based RNAi specifically suppressed the expression of the target gene in wasp adults. Taken together, our results provide a powerful genetic toolkit for studying the molecular mechanisms of parasitism.


Assuntos
Vespas , Animais , Drosophila/genética , Feminino , Larva/parasitologia , Anotação de Sequência Molecular , Interferência de RNA , RNA de Cadeia Dupla/genética , Vespas/genética
19.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210198, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35694751

RESUMO

It has long been suggested that dimorphic female-limited Batesian mimicry of two closely related Papilio butterflies, Papilio memnon and Papilio polytes, is controlled by supergenes. Whole-genome sequencing, genome-wide association studies and functional analyses have recently identified mimicry supergenes, including the doublesex (dsx) gene. Although supergenes of both the species are composed of highly divergent regions between mimetic and non-mimetic alleles and are located at the same chromosomal locus, they show critical differences in genomic architecture, particularly with or without an inversion: P. polytes has an inversion, but P. memnon does not. This review introduces and compares the detailed genomic structure of mimicry supergenes in two Papilio species, including gene composition, repetitive sequence composition, breakpoint/boundary site structure, chromosomal inversion and linkage disequilibrium. Expression patterns and functional analyses of the respective genes within or flanking the supergene suggest that dsx and other genes are involved in mimetic traits. In addition, structural comparison of the corresponding region for the mimicry supergene among further Papilio species suggests three scenarios for the evolution of the mimicry supergene between the two Papilio species. The structural features revealed in the Papilio mimicry supergene provide insight into the formation, maintenance and evolution of supergenes. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Assuntos
Mimetismo Biológico , Borboletas , Animais , Mimetismo Biológico/genética , Borboletas/genética , Inversão Cromossômica , Feminino , Estudo de Associação Genômica Ampla , Genômica , Asas de Animais
20.
Proc Natl Acad Sci U S A ; 119(20): e2121177119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561225

RESUMO

Beyond their well-known role in respiration, mitochondria of land plants contain biologically essential and/or agriculturally important genes whose function and regulation are not fully understood. Until recently, it has been difficult to analyze these genes or, in the case of crops, to improve their functions, due to a lack of methods for stably modifying plant mitochondrial genomes. In rice, rapeseed, and Arabidopsis thaliana, mitochondria-targeting transcription activator-like effector nucleases (mitoTALENs) have recently been used to disrupt targeted genes in an inheritable and stable manner. However, this technique can also induce large deletions around the targeted sites, as well as cause ectopic homologous recombinations, which can change the sequences and gene order of mitochondrial genomes. Here, we used mitochondria-targeting TALEN-based cytidine deaminase to successfully substitute targeted C:G pairs with T:A pairs in the mitochondrial genomes of plantlets of A. thaliana without causing deletions or changes in genome structure. Expression vectors of the base editor genes were stably introduced into the nuclear genome by the easy-to-use floral dipping method. Some T1 plants had apparent homoplasmic substitutions that were stably inherited by seed progenies, independently of the inheritance of nuclear-introduced genes. As a demonstration of the method, we used it to restore the growth of an organelle transcript processing 87 (otp87) mutant that is defective in the editing of RNA transcripts of the mitochondrial atp1 gene and to identify bases in atp1 that affect the efficiency of RNA editing by OTP87.


Assuntos
Arabidopsis , Edição de Genes , Marcação de Genes , Genoma Mitocondrial , Genoma de Planta , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Arabidopsis/genética , Proteínas de Arabidopsis , Pareamento de Bases , Edição de Genes/métodos , Marcação de Genes/métodos , Genoma Mitocondrial/genética , Genoma de Planta/genética , Mitocôndrias/genética , ATPases Translocadoras de Prótons/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...